PLTW Engineering Formula Sheet

1.0 Statistics

Mean

$$\chi = \frac{\sum x_i}{N} \tag{1.1a}$$

 $\bar{\mathbf{x}} = \frac{\sum x_i}{n}$ (1.1b)

 μ = population mean

 \bar{x} = sample mean

 Σx_i = sum of all data values $(x_1, x_2, x_3, ...)$

N = size of population

n = size of sample

Median

Place data in ascending order.

If N is odd, median = central value

(1.2)

If N is even, median = mean of two central values

N = size of population

Range (1.5)

Range = $x_{max} - x_{min}$ (1.3)

 x_{max} = maximum data value

x_{min} = minimum data value

Mode

Place data in ascending order.

Mode = most frequently occurring value

(1.4)

If two values occur with maximum frequency the data set is bimodal.

If three or more values occur with maximum frequency the data set is multi-modal.

Standard Deviation

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}} \text{ (Population)} \quad (1.5a)$$

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n - 1}} \text{ (Sample)}$$
 (1.5b)

 σ = population standard deviation

s = sample standard deviation

 x_i = individual data value ($x_1, x_2, x_3, ...$)

 μ = population mean

 \bar{x} = sample mean

N = size of population

n = size of sample

2.0 Probability

Frequency

$$f_X = \frac{n_X}{n}$$

(2.1)

f_x = relative frequency of outcome x

 n_x = number of events with outcome x

n = total number of events

Binomial Probability (order doesn't matter)

$$P_k = \frac{n!(p^k)(q^{n-k})}{k!(n-k)!}$$

(2.2)

P_k = binomial probability of k successes in n trials

p = probability of a success

q = 1 - p = probability of failure

k = number of successes

n = number of trials

Independent Events

 $P (A \text{ and } B \text{ and } C) = P_A P_B P_C$

(2.3)

P (A and B and C) = probability of independent events A and B and C occurring in sequence

P_A = probability of event A

Mutually Exclusive Events

$$P(A \text{ or } B) = P_A + P_B$$

(2.4)

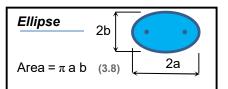
P (A or B) = probability of either mutually exclusive event A or B occurring in a trial

P_A = probability of event A

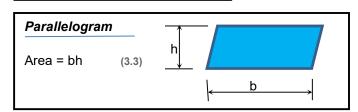
Conditional Probability

$$P(A|D) = \frac{P(A) \cdot P(D|A)}{P(A) \cdot P(D|A) + P(\sim A) \cdot P(D|\sim A)}$$
(2.5)

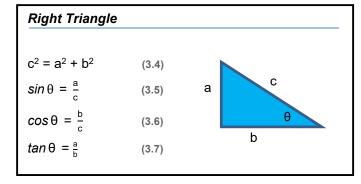
P (A|D) = probability of event A given event D

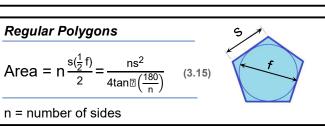

P(A) = probability of event A occurring

 $P(\sim A)$ = probability of event A not occurring

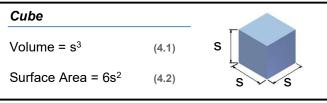

P(D|~A) = probability of event D given event A did not occur

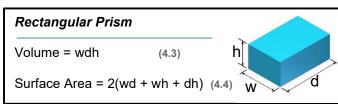
3.0 Plane Geometry

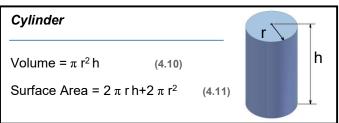

Circle Circumference = $2 \pi r$ (3.1) Area = π r²

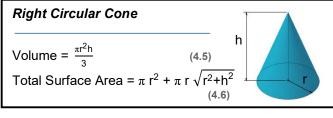


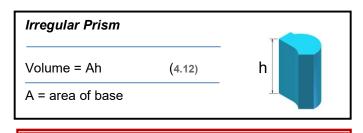
Rectangle		
Perimeter = 2a + 2b (3.9) Area = ab (3.10)		b
Area = ab (3.10)	a	(d)


Triangle (3.6)		В
Area = ½ bh	(3.11)	a h c
$a^2 = b^2 + c^2 - 2bc \cdot cos \angle A$ $b^2 = a^2 + c^2 - 2ac \cdot cos \angle B$ $c^2 = a^2 + b^2 - 2ab \cdot cos \angle C$	(3.13)	C b A






4.0 Solid Geometry



Pyramid Volume = $\frac{Ah}{3}$ h (4.7)A = area of base

5.0 Constants

6.0 Conversions

Mass/Weight (6.1)

 $1 \text{ kg} = 2.205 \text{ lb}_{m}$ $1 \text{ slug} = 32.2 \text{ lb}_{m}$ 1 ton = 2000 lb 1 lb = 16 oz

Length (6.2)

1 m = 3.28 ft 1 km = 0.621 mi 1 in. = 2.54 cm 1 mi = 5280 ft 1 yd = 3 ft

Time (6.3)

1 d = 24 h 1 h = 60 min 1 min = 60 s 1 yr = 365 d

Area (6.4)

1 acre = 4047 m^2 = $43,560 \text{ ft}^2$ = 0.00156 mi^2

Volume (6.5)

1L = 0.264 gal = 0.0353 ft³ = 33.8 fl oz 1mL = 1 cm³ = 1 cc

Temperature <u>Unit</u>

Equivalents (6.6)
*Use equation in section 9.0 to convert

 $\Delta 1 \text{ K} = \Delta 1 ^{\circ}\text{C}$ = $\Delta 1.8 ^{\circ}\text{F}$ = $\Delta 1.8 ^{\circ}\text{R}$

Force (6.7)

1 N = 0.225 lb1 kip = 1,000 lb

Pressure (6.8)

1 atm = 1.01325 bar = 33.9 ft H₂O = 29.92 in. Hg = 760 mm Hg = 101,325 Pa = 14.7 psi 1psi = 2.31 ft of H₂O

Power (6.9)

1 W = 3.412 Btu/h = 0.00134 hp = 14.34 cal/min = 0.7376 ft·lb/s 1 hp = 550 ft·lb/sec

Energy (6.10)

1 J = 0.239 cal= $9.48 \times 10^{-4} \text{ Btu}$ = $0.7376 \text{ ft} \cdot \text{lb}_f$ 1kW h = 3,600,000 J

Rotational Speed (6.11)

1 Hz = 60 rpm = 2π rad/sec

7.0 Defined Units

1 J = 1 N·m $= 1 \text{ kg} \cdot \text{m} / \text{s}^2$ 1 N $= 1 N / m^2$ 1 Pa 1 V = 1 W/A1 W = 1 J/s1 W = 1 V·A $= 1 s^{-1}$ 1 Hz 1 F $= 1 A \cdot s / V$ 1 H = 1 V·s / A

8.0 SI Prefixes

	Numbers Less Than One						
Power of 10	Decimal Equivalent	Prefix	Abbreviation				
10 ⁻¹	0.1	deci-	d				
10-2	0.01	centi-	С				
10 ⁻³	0.001	milli-	m				
10-6	0.000001	micro-	μ				
10 ⁻⁹	0.00000001	nano-	n				
10 ⁻¹²		pico-	р				
10 ⁻¹⁵		femto-	f				
10 ⁻¹⁸		atto-	а				
10 ⁻²¹		zepto-	z				
10 ⁻²⁴		yocto-	у				

N	Numbers Greater Than One						
Power of 10	Whole Number Equivalent	Prefix	Abbreviation				
10 ¹	10	deca-	da				
10 ²	100	hecto-	h				
10 ³	1000	kilo-	k				
10 ⁶	1,000,000	Mega-	M				
10 ⁹	1,000,000,000	Giga-	G				
10 ¹²		Tera-	Т				
10 ¹⁵		Peta-	Р				
10 ¹⁸		Exa-	E				
10 ²¹		Zetta-	Z				
10 ²⁴		Yotta-	Υ				

9.0 Equations

Mass and Weight

 $m = VD_m$ (9.1) W = mg (9.2) $W = VD_w$ (9.3)

V = volume

D_m = mass density

m = mass

D_w = weight density

W = weight

g = acceleration due to gravity

Temperature

 $T_K = T_C + 273$ (9.4)

 $T_R = T_F + 460$ (9.5)

 $T_F = \frac{9}{5} T_c + 32$ (9.6a)

 $T_{C} = \frac{T_{F}-32}{1.8}$ (9.6b)

 T_K = temperature in Kelvin

 T_C = temperature in Celsius

T_R = temperature in Rankine

T_F = temperature in Fahrenheit

Force and Moment

F = ma (9.7a) $M = Fd_{\perp}$ (9.7b)

F = force

m = mass

a = acceleration

M = moment

d⊥= perpendicular distance

Equations of Static Equilibrium

 $\Sigma F_x = 0$ $\Sigma F_y = 0$ $\Sigma M_P = 0$ (9.8)

 F_x = force in the x-direction

 F_y = force in the y-direction

M_P = moment about point P

9.0 (Continued) Equations

Energy: Work

 $W = F_{\parallel} \cdot d$

(9.9)

W = work

F_∥ = force parallel to direction of displacement

d = displacement

Power

$$P = \frac{E}{t} = \frac{W}{t}$$

(9.10)

$$P = \tau \omega$$

(9.11)

P = power

E = energy

W = work

t = time

 τ = torque

 ω = angular velocity

Efficiency

Efficiency (%) =
$$\frac{P_{out}}{P_{in}} \cdot 100\%$$
 (9.12)

P_{out} = useful power output P_{in} = total power input

Energy: Potential

U = mgh

(9.13)

U = potential energy

m =mass

g = acceleration due to gravity

h = height

Energy: Kinetic

$$K = \frac{1}{2} mv^2$$

(9.14)

K = kinetic energy

m = mass

v = velocity

Energy: Thermal

$$\triangle Q = mc\Delta T$$

(9.15)

 $\triangle Q$ = change in thermal energy

m = mass

c = specific heat

 ΔT = change in temperature

Fluid Mechanics

$$p = \frac{F}{\Delta}$$

(9.16)

$$\frac{V_1}{T_4} = \frac{V_2}{T_2}$$
 (Charles' Law)

(9.17)

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$
 (Gay-Lussac's Law) (9.18)

$$p_1V_1 = p_2V_2$$
 (Boyle's Law) (9.19)

$$Q = Av$$

(9.20)

$$A_1v_1 = A_2v_2$$

(9.21)

$$P = Qp$$

(9.22)

absolute pressure = gauge pressure + atmospheric pressure (9.23)

p = absolute pressure

F = force

A = area

V = volume

T = absolute temperature

Q = flow rate

v = flow velocity

P = power

Mechanics

$$\bar{s} = \frac{d}{t}$$

(9.24)

$$\bar{\mathbf{v}} = \frac{\Delta \mathbf{d}}{\Delta t}$$

(9.25)

$$a = \frac{v_f - v_i}{t}$$

(9.26)

$$X = \frac{v_i^2 \sin(2\theta)}{-a}$$

(9.27)

$$v = v_i + at$$

$$v = v_i + at$$

(9.28)

$$d = d_i + v_i t + \frac{1}{2}at^2$$

(9.29)

$$v^2 = v_i^2 + 2a(d - d_i)$$

(9.30)

$$\tau = dFsin\theta$$

(9.31)

\bar{s} = average speed

 $\bar{\mathbf{v}}$ = average velocity

v = velocity

 v_i = initial velocity (t =0)

a = acceleration

X = range

t = time

 $\Delta \mathbf{d}$ = change in displacement

d = distance

 d_i = initial distance (t=0)

g = acceleration due to gravity

 θ = angle

 τ = torque

F = force

Electricity

Ohm's Law

$$V = IR$$

$$= IR (9.32)$$

$$P = IV$$

(9.33)

 R_T (series) = $R_1 + R_2 + \dots + R_n$ (9.34)

R_T (parallel) = $\frac{1}{\frac{1}{R_A} + \frac{1}{R_A} + \cdots + \frac{1}{R_-}}$ (9.35)

Kirchhoff's Current Law

$$I_T = I_1 + I_2 + \cdots + I_n$$

or
$$I_T = \sum_{k=1}^{n} I_k$$
 (9.36)

Kirchhoff's Voltage Law

$$V_T = V_1 + V_2 + \cdots + V_n$$

or
$$V_T = \sum_{k=1}^{n} V_k$$
 (9.37)

V = voltage

V_T = total voltage

I = current

I_T = total current

R = resistance

 R_T = total resistance

P = power

Thermodynamics

$$P = Q' = AU\Delta T$$

(9.38)

$$P = Q' = \frac{\Delta Q}{\Delta t}$$

(9.39)

$$U = \frac{1}{R} = \frac{k}{L}$$

(9.40)

$$P = \frac{kA\Delta T}{I}$$

(9.41)

$$A_1v_1 = A_2v_2$$

(9.42)

$$P_{\text{net}} = \sigma A e (T^4 - T_C^4)$$

$$k = \frac{PL}{A\Delta T}$$

(9.43)(9.44)

P = rate of heat transfer

Q = thermal energy

A = area of thermal conductivity

U = coefficient of heat conductivity (U-factor)

 ΔT = change in temperature

 Δt = change in time

R = resistance to heat flow (R-value)

k = thermal conductivity

v = velocity

P_{net} = net power radiated

 $\sigma = 5.6696 \times 10^{-8} \frac{W}{m^2 \cdot k^4}$

e = emissivity constant

L = thickness

T = temperature of radiator

T_C = temperature of surroundings

9.0 (Continued) Equations

Tolerance Analysis

Tolerance Loop Nominal Value = Σ Nominal values in the loop (9.45)

RSS Maximum Battery Value = Nominal Battery Value- $\sqrt{\Sigma Tolerances^2}$ (9.46)

Worst Case Battery Value = Nominal Battery Value - Σ Tolerances (9.47)

Traffic Flow Rate

$$Q = \frac{V}{t}$$

$$Q_{avg} = \frac{\Sigma Q_i}{n}$$

$$A = \pi \left(\frac{diameter}{2}\right)^2 \qquad (9.8)$$

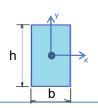
Q = flow rate (ml/s)

V = volume

t = time(s)

A = area

 Q_{avg} = average flow rate


 ΣQ_i = sum of all flow rates

10.0 Section Properties

Moment of Inertia

$$I_{xx} = \frac{bh^3}{12}$$

(10.1)

 I_{xx} = moment of inertia of a rectangular section about x axis

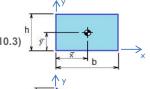
Complex Shapes Centroid

$$\overline{x} = \frac{\sum x_i A_i}{\sum A_i}$$
 and $\overline{y} = \frac{\sum y_i A_i}{\sum A_i}$

(10.2)

 \overline{x} = x-distance to the centroid

 \overline{y} = y-distance to the centroid

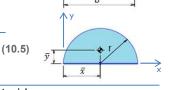

 $x_i = x$ distance to centroid of shape i

 $y_i = y$ distance to centroid of shape i

A_i = Area of shape i

Rectangle Centroid

$$\bar{x} = \frac{b}{2}$$
 and $\bar{y} = \frac{h}{2}$



Right Triangle Centroid

$$\overline{x} = \frac{b}{3}$$
 and $\overline{y} = \frac{h}{3}$

Semi-circle Centroid

$$\overline{x} = r$$
 and $\overline{y} = \frac{4r}{3\pi}$

 \overline{x} = x-distance to the centroid

 \bar{y} = y-distance to the centroid

11.0 Material

Stress (axial)

$$\sigma = \frac{F}{A}$$

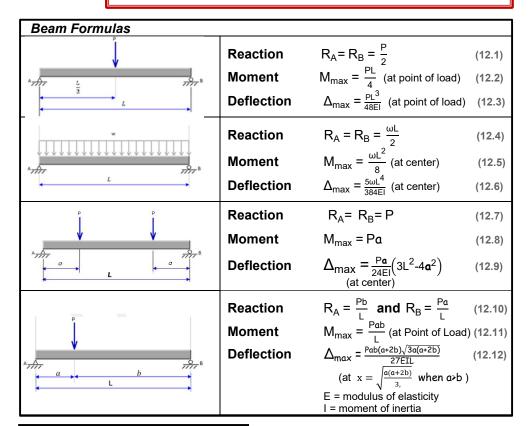
- σ = stress
- F = axial force
- A = cross-sectional area

Strain (axial)

$$\varepsilon = \frac{\delta}{L_0}$$

- $\varepsilon = strain$
- L₀ = original length
- δ = change in length

Modulus of Elasticity


$$E = \frac{\sigma}{\epsilon}$$

$$E = \frac{(F_2 - F_1)L_0}{(\delta_2 - \delta_1)A}$$
 (11.4)

E = modulus of elasticity

- σ = stress
- $\varepsilon = strain$
- A = cross-sectional area
- F = axial force
- δ = deformation

12.0 Structural Analysis

Deformation: Axial

$$\delta = \frac{FL_0}{AF}$$

(12.13)

 δ = deformation

F = axial force

L₀ = original length

A = cross-sectional area

E = modulus of elasticity

Truss Analysis

$$2J = M + R$$

(12.14)

J = number of joints

M =number of members

R = number of reaction forces

13.0 Simple Machines

Mechanical Advantage (MA)

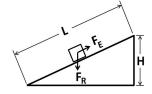
$$IMA = \frac{D_E}{D_B}$$
 (13.1) $AMA = \frac{F_R}{F_E}$

$$MA = \frac{F_R}{F_F}$$
 (13.2)

% Efficiency=
$$\left(\frac{AMA}{IMA}\right)$$
 100 (13.3)

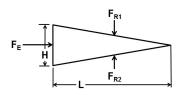
IMA = ideal mechanical advantage

AMA = actual mechanical advantage

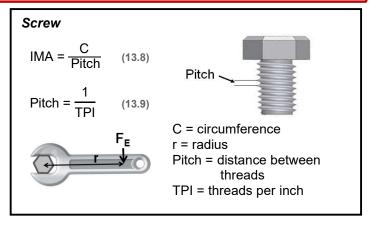

 D_E = effort distance D_R = resistance distance

 F_E = effort force

F_R = resistance force


Inclined Plane

IMA=
$$\frac{L}{H}$$
 (13.6)


Wedge

IMA=
$$\frac{L}{H}$$
 (13.7)

13.0 (Continued) Simple Machines

Gear Ratio

$$Gear Ratio = \frac{Teeth_{Driven}}{Teeth_{Driver}} = \frac{Diameter_{Driver}}{Diameter_{Driver}}$$

Driver = Input Gear Driven = Output Gear

14.0 Structural Design

Steel Beam Design: Shear

$$V_a \le \frac{V_n}{\Omega_v}$$

(14.1)

$$V_n = 0.6F_yA_w$$

(14.2)

V_a = internal shear force

V_n = nominal shear strength

 $\Omega_{\rm v}$ = 1.5 = factor of safety for shear

 F_v = yield stress

A_w = area of web

 $\frac{v_n}{2}$ = allowable shear strength

Steel Beam Design: Moment

$$M_a \le \frac{M_n}{\Omega_b}$$

(14.3)

$$M_n = F_y Z_x$$

(14.4)

M_a = internal bending moment

 M_n = nominal moment strength

 Ω_b = 1.67 = factor of safety for bending moment

 F_y = yield stress

Z_x = plastic section modulus about neutral axis

 $\frac{M_n}{\Omega_b}$ = allowable bending strength

Spread Footing Design

$$q_{net} = q_{allowable} - p_{footing}$$
 (14.5)

$$p_{\text{footing}} = t_{\text{footing}} \cdot 150 \frac{\text{lb}}{\text{ft}^3}$$
 (14.6)

$$q = \frac{P}{A} \tag{14.7}$$

q_{net} = net allowable soil bearing pressure

q_{allowable} = total allowable soil bearing pressure

p_{footing} = soil bearing pressure due to footing weight

 $t_{footing}$ = thickness of footing

q = soil bearing pressure P = column load applied

A = area of footing

15.0 Storm Water Runoff

Tota Ctarri Water Harrer

Storm Water Drainage

 $Q = C_f CiA (15.1)$

$$C_{c} = \frac{C_{1}A_{1} + C_{2}A_{2} + \cdots}{A_{1} + A_{2} + \cdots}$$
 (15.2)

Q = peak storm water runoff rate (ft³/s)

C_f = runoff coefficient adjustment factor

C = runoff coefficient

i = rainfall intensity (in./h)

A = drainage area (acres)

Runoff Coefficient Adjustment Factor

R	eturn Period	Ct
1	, 2, 5, 10	1.0
2	5	1.1
5	0	1.2
1	00	1.25

Rational Method Runoff Coefficients

Categorized by Surface

	y
Forested	0.059—0.2
Asphalt	0.7—0.95
Brick	0.7—0.85
Concrete	0.8—0.95
Shingle roof	0.75—0.95
Lawns, well draine	
Up to 2% slope	0.05—0.1
2% to 7% slope	0.10—0.15
Over 7% slope	0.15—0.2
Lawns, poor drain	
Up to 2% slope	0.13—0.17
2% to 7% slope	0.18—0.22
Over 7% slope	0.25—0.35
Driveways,	0.75—0.85
Categorized	by Use
Farmland	0.05—0.3
Pasture	0.05—0.3
Unimproved	0.1—0.3
Parks	0.1—0.25
Cemeteries	0.1—0.25
Railroad yard	0.2—0.40
Playgrounds	0.2—0.35
Business Districts	
Neighborhood	0.5—0.7
City (downtown)	0.7—0.95
Residential	
Single-family	0.3—0.5
Multi-plexes,	0.4—0.6
Multi-plexes,	0.6—0.75
Suburban	0.25—0.4
Apartments,	0.5—0.7
Industr	rial
Light	0.5—0.8
Heavy	0.6—0.9

16.0 Water Supply

Hazen-Williams Formula

$$h_{f} = \frac{10.44 LQ^{1.85}}{C^{1.85} d^{4.8655}}$$
 (16.1)

h_f = head loss due to friction (ft of H₂O)

L = length of pipe (ft)

Q = water flow rate (gpm)

C = Hazen-Williams constant

d = diameter of pipe (in.)

Dynamic Head

17.0 Heat Loss/Gain

Heat Loss/Gain

$$Q' = AU\Delta T \qquad (17.1)$$

$$U = \frac{1}{R} \tag{17.2}$$

Q = thermal energy

A = area of thermal conductivity

U = coefficient of heat

conductivity (U-factor)

 ΔT = change in temperature R = resistance to heat flow (R-

value)

18.0 Hazen-Williams Constants

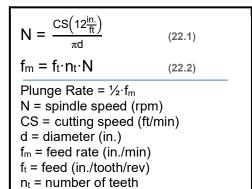
Pipe Material	Typical Range	Clean New Pipe	Typical Design Values
Cast Iron and Wrought Iron	80 - 150	130	100
Copper, Glass, or Brass	120 - 150	140	130
Cement-Lined Steel or Iron	n/a	150	140
Plastic PVC or ABS	120 - 150	140	130
Steel (welded and seamless) or interior riveted	80 - 150	140	100

19.0 Equivalent Length of (Generic) Fittings

		Pipe Size										
Screwed	Fittings	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2	2 ½	3	4
	Regular 90 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
Elbows	Long radius 90 degree	1.5	2.0	2.2	2.3	2.7	3.2	3.4	3.6	3.6	4.0	4.6
	Regular 45 degree	0.3	0.5	0.7	0.9	1.3	1.7	2.1	2.7	3.2	4.0	5.5
Tees	Line Flow	0.8	1.2	1.7	2.4	3.2	4.6	5.6	7.7	9.3	12.0	17.0
rees	Branch Flow	2.4	3.5	4.2	5.3	6.6	8.7	9.9	12.0	13.0	17.0	21.0
Return	Regular 180 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0
	Globe	21.0	22.0	22.0	24.0	29.0	37.0	42.0	54.0	62.0	79.0	110.0
	Gate	0.3	0.5	0.6	0.7	0.8	1.1	1.2	1.5	1.7	1.9	2.5
Valves	Angle	12.8	15.0	15.0	15.0	17.0	18.0	18.0	18.0	18.0	18.0	18.0
	Swing Check	7.2	7.3	8.0	8.8	11.0	13.0	15.0	19.0	22.0	27.0	38.0
Strainer			4.6	5.0	6.6	7.7	18.0	20.0	27.0	29.0	34.0	42.0

Florence	Fittings		Pipe Size															
Flanged	rittings	1/2	3/4	1	1 1/4	1 ½	2	2 ½	3	4	5	6	8	10	12	14	16	18
	Regular 90 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
Elbows	Long radius 90	1.1	1.3	1.6	2.0	2.3	2.7	2.7	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Regular 45 degree	0.5	0.6	0.8	1.1	1.3	1.7	2.0	2.5	3.5	4.5	5.6	7.7	9.0	11.0	13.0	15.0	16.0
Tees	Line Flow	0.7	8.0	1.0	1.3	1.5	1.8	1.9	2.2	2.8	3.3	3.8	4.7	5.2	6.0	6.4	7.2	7.6
rees	Branch Flow	2.0	2.6	3.3	4.4	5.2	6.6	7.5	9.4	12.0	15.0	18.0	24.0	30.0	34.0	37.0	43.0	47.0
Return	Regular 180 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
Bends	Long radius 180	1.1	1.3	1.6	2.0	2.3	2.7	2.9	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Globe	38.0	40.0	45.0	54.0	59.0	70.0	77.0	94.0	120.0	150.0	190.0.	260.0	310.0	390.0			
Values	Gate						2.6	2.7	2.8	2.9	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2
Valves	Angle	15.0	15.0	17.0	18.0	18.0	21.0	22.0	285.0	38.0	50.0	63.0	90.0	120.0	140.0	160.0	190.0	210.0
	Swing Check	3.8	5.3	7.2	10.0	12.0	17.0	21.0	27.0	38.0	50.0	63.0	90.0	120.0	140.0			

20.0 555 Timer Design


$T = 0.693 (R_A + 2R_B)C$	(20.1)
$f = \frac{1}{T}$	(20.2)
$duty-cycle = \frac{(R_A + R_B)}{(R_A + 2R_B)} \cdot 100\%$	(20.3)
T = period f = frequency R _A = resistance A R _B = resistance B	

21.B Resistor Color Code

C = capacitance

	1st Band	2 nd Band	Multiplier
NONE			
Silver			0.01
Gold			0.1
Black	0	0	1
Brown	1	1	10
Red	2	2	100
Orange	3	3	1K
Yellow	4	4	10K
Green	5	5	100K
Blue	6	6	1M
Violet	7	7	10M
Gray	8	8	100M
White	9	9	1000M

22.0 Speeds and Feeds

21.A Boolean Algebra

Boolean The	orems
X• 0 = 0	(21.1)
X•1 = X	(21.2)
X• X =X	(21.3)
X • <u>X</u> =0	(21.4)
X + 0 = X	(21.5)
X + 1 = 1	(21.6)
X + X = X	(21.7)
$X + \overline{X} = 1$	(21.8)
$\overline{\overline{X}} = X$	(21.9)

Consensus Theorems		
$X + \overline{X}Y = X + Y$	(21.16)	
$X + \overline{X}\overline{Y} = X + \overline{Y}$	(21.17)	
$\overline{X} + XY = \overline{X} + Y$	(21.18)	
$\overline{X} + X\overline{Y} = \overline{X} + \overline{Y}$	(21.19)	

Commutative Law	
$X \bullet Y = Y \bullet X$	(21.10)
X+Y=Y+X	(21.11)

Associative Law	
X(YZ) = (XY)Z	(21.12)
X + (Y + Z) = (X + Y) + Z	(21.13)

Distributive Law	
X(Y+Z) = XY + XZ	(21.14)
(X+Y)(W+Z) = XW+XZ+YW+YZ	(21.15)

21.C Capacitor Code

20% 10%

Code	Tolerance
Α	±0.05%
В	±0.1%
С	±0.25%
D	±0.5%
F	±1%
G	±2%
J	±5%
K	±10%
M or NONE	±20%
N	±30%
Q	-10%, +30%
S	-20%, +50%
Т	-10%, +50%
Z	-20%, +80%

23.A G&M Codes

G00 = Rapid Traverse	(23.1)
G01 = Straight Line Interpolation	(23.2)
G02 = Circular Interpolation (clockwise)	(23.3)
G03 = Circular Interpolation (c-clockwise)	(23.4)
G04 = Dwell (wait)	(23.5)
G05 = Pause for user intervention	(23.6)
G20 = Inch programming units	(23.7)
G21 = Millimeter programming units	(23.8)
G80 = Canned cycle cancel	(23.9)
G81 = Drilling cycle	(23.10)
G82 = Drilling cycle with dwell	(23.11)
G90 = Absolute Coordinates	(23.12)
G91 = Relative Coordinates	(23.13)
M00 = Pause	(23.14)
M01 = Optional stop	(23.15)
M02 = End of program	(23.16)
M03 = Spindle on	(23.17)
M05 = Spindle off	(23.18)
M06 = Tool change	(23.19)
M08 = Accessory # 1 on	(23.20)
M09 = Accessory # 1 off	(23.21)
M10 = Accessory # 2 on	(23.22)
M11 = Accessory # 2 off	(23.23)
M30 = Program end and reset	(23.24)
M47 = Rewind	(23.25)

23.B Roll Angle

 $\theta_{\text{Roll}} = Tan^{-1} \left(\frac{opp}{Adj} \right)$ (23.26)

Robot Top View Adj

24.0 Aerospace

Forces of Flight

$$C_D = \frac{2D}{A\rho v^2} \tag{24.1}$$

$$R_e = \frac{\rho vl}{\mu}$$
 (24.2)

$$C_{L} = \frac{2L}{A\rho v^2}$$
 (24.3)

Moment: See 9.7b

C_L = coefficient of lift

C_D = coefficient of drag

L = lift

D = drag

A = wing area

 ρ = density

R_e = Reynolds number

v = velocity

I = length of fluid travel

 μ = fluid viscosity

F = force

m = mass

g = acceleration due to gravity

M = moment

Bernoulli's Law

$$\left(P_{s} + \frac{\rho v^{2}}{2}\right)_{1} = \left(P_{s} + \frac{\rho v^{2}}{2}\right)_{2}$$
 (24.12)

Ps = static pressure

v = velocity

 ρ = density

Propulsion

$$F_N = W(v_i - v_o)$$
 (24.4)

$$I = F_{ave} \Delta t$$

$$F_{net} = F_{avq} - F_q$$

$$a = \frac{v_f}{\Delta t}$$

 F_N = net thrust

W = air mass flow

vo = flight velocity

 v_i = jet velocity

I = total impulse

 F_{ave} = average thrust force

 Δt = change in time (thrust duration)

 F_{net} = net force

F_{avg} = average force

 F_g = force of gravity

v_f = final velocity

a = acceleration

 Δt = change in time (thrust

duration)

NOTE: Fave and Favg are easily confused.

Atmosphere Parameters

$$T = 15.04 - 0.00649h$$
 (24.13)

$$p = 101.29 \left[\frac{(T + 273.1)}{288.08} \right]^{5.256}$$
 (24.14)

$$\rho = \frac{p}{0.2869(T + 273.1)} \tag{24.15}$$

T = temperature

h = height

p = pressure

 ρ = density

Energy

$$K = \frac{1}{2} mv^2$$
 (24.8)

$$U = \frac{-GMm}{R}$$
 (24.9)

$$E = U + K = -\frac{GMm}{2R}$$
 (24.10)

G =
$$6.67 \times 10^{-11} \frac{\text{m}^3}{\text{kg} \times s^2}$$
 (24.11)

K = kinetic energy

m = mass

v = velocity

U = gravitational potential energy

G = universal gravitation constant

M = mass of central body

m = mass of orbiting object

R = Distance center main body to center of orbiting object

E = Total Energy of an orbit

 $M_{Earth} = 5.97 \times 10^{24} \text{ kg}$

 $r_{Earth} = 6.378 \times 10^3 \text{ km}$

Orbital Mechanics

$$e = \sqrt{1 - \frac{b^2}{a^2}}$$
 (24.16)

$$T = 2\pi \frac{a^{\frac{3}{2}}}{\sqrt{\mu}} = 2\pi \frac{a^{\frac{3}{2}}}{\sqrt{GM}}$$
 (24.17)

$$F = \frac{GMm}{r^2}$$
 (24.18)

e = eccentricity

b = semi-minor axis

a =semi-major axis

T = orbital period

a = semi-major axis

 μ = gravitational parameter

F = force of gravity between two bodies

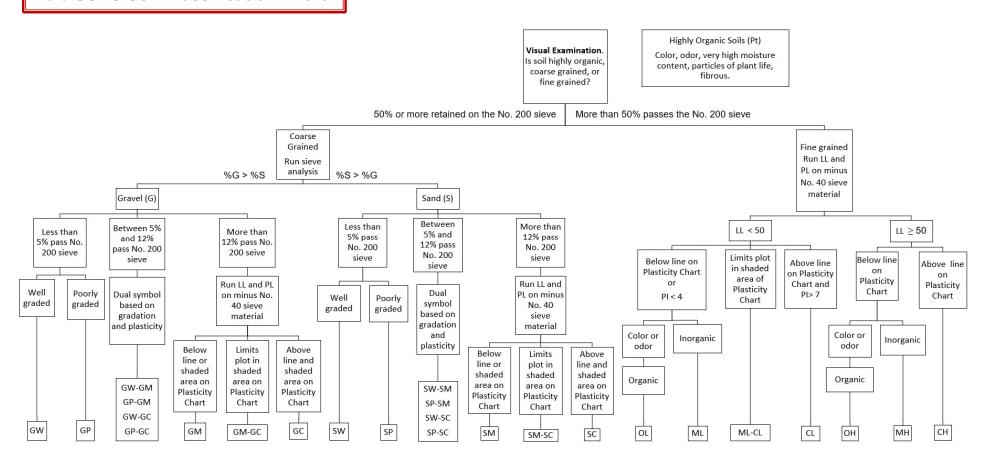
G = universal gravitation constant

M =mass of central body

m = mass of orbiting object

r = distance between center of two objects

25.0 Environmental Sustainability


colonies/mL = # colonies/dilution

Transformation Efficiency (# Transformants/
$$\mu$$
g) = $\frac{\text{# of transformants}}{\mu g \text{ of DNA}} \cdot \frac{\text{final volume at recovery}}{\text{volume plated (mL)}}$

Economic Growth =
$$\frac{GDP_2 - GDP_1}{GDP_4}$$

$$R_f = \frac{\text{distance the substance travels}}{\text{distance the solvent travels}}$$

26.0 USCS Soil Classification Chart

