sel

# AP Calculus BC SUMMER REVIEW SUPPLEMENTARY PACKET FOR BC STUDENTS 

For students entering $C A L C U L U S$ (AP Calculus BC)<br>Valley Christian High School

Name: $\qquad$

Course: $\qquad$ Period $\qquad$

This is Summer Homework Packet \#2. BC Students are also required to do Packet \#1 homework, common to both AB and BC Students.

The problems in this packet are designed to help you review pre-requisite skills that will help you succeed in AP Calculus C. The topics: infinite series, parametric equations and polar functions are covered in Semester 2 as part of AP Calculus C topics. You'll find that the problems in this packet are designed to expose topics that you learned in Algebra 2 or Trigonometry. (Does not cover calculus). We will learn the calculus in class! The purpose of the summer packet is to pull in the skills you learned 1 or 2 years ago from your previous math classes. If you find you do not remember series and sequences, polar and parametric graphs, then feel free to spend a bit of time googling those topics during the summer.

Bring in both summer packets (showing work!) due on the first day
Enjoy your summer! Any questions? Email me at dshak@ vcs.net or diana@ shaknet.com.
~ Mrs. Shak

## Sum of Constant Sum with coefficient $\underline{\text { Sum of a Sum/Difference }}$ <br> $\sum_{i=1}^{n} c=c n \quad \sum_{i=1}^{n} k a_{i}=k \sum_{i=1}^{n} a_{i} \quad \sum_{i=1}^{n}\left(a_{i} \pm b_{i}\right)=\sum_{i=1}^{n} a_{i} \pm \sum_{i=1}^{n} b_{i}$

Sum of Linear Term Sum of Squared Term Sum of Cubed Term Limits to Infinity
$\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
$\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
$\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$
$\lim _{n \rightarrow \infty} \frac{1}{n}=0 \quad \lim _{n \rightarrow \infty} \frac{a n^{c}}{b n^{c}}=\frac{a}{b}$

## Examples:

$\sum_{i=1}^{8} i=\frac{8(9)}{2}=36 \quad \sum_{i=1}^{3} i^{2}=\frac{3(4)(7)}{6}=14 \quad \sum_{i=1}^{5} i^{3}=\frac{5^{2} 6^{2}}{4}=225$
Evaluate the sum:

1. $\sum_{i=1}^{5} \frac{i}{2}=$
2. $\sum_{i=1}^{5} \frac{3}{4} i^{2}=$

Evaluate the $\operatorname{sum} \mathbf{S}(\mathbf{n})$ in terms of $\mathbf{n}$, then find $\lim _{n \rightarrow \infty} S(n)$ :
3. $\mathrm{S}(\mathrm{n})=\sum_{i=1}^{n} \frac{i}{n^{2}}=$
4. $\mathrm{S}(\mathrm{n})=\sum_{i=1}^{n} \frac{i+2}{n^{2}}=$
$\lim _{n \rightarrow \infty} S(n)=$

$$
\lim _{n \rightarrow \infty} S(n)=
$$

5. $\mathrm{S}(\mathrm{n})=\sum_{i=1}^{n}\left[\left(1+\frac{i}{n}\right)^{2}\left(\frac{1}{n}\right)\right]=$
6. $\mathrm{S}(\mathrm{n})=\sum_{i=1}^{n}\left[3-2\left(\frac{i}{n}\right)\right]\left(\frac{1}{n}\right)=$
$\lim _{n \rightarrow \infty} S(n)=$

$$
\lim _{n \rightarrow \infty} S(n)=
$$

## Parametric Equations

Curves are often represented by parametric equations, where a third variable (or parameter) is introduced to give more information about the curve. A common parameter might be $t$ or $\theta$. To convert a set of parametric equations into rectangular equations, solve for the parameter $(t)$ in terms of one variable, substitute for $t$ in the other equation. Rewrite the new equation, eliminating the $t$.

Example: $x=2 t-3, y=3 t+1$
Solve for $\mathbf{t}: t=\frac{x+3}{2} \quad$ Substitute and eliminate $\mathbf{t}: \quad y=3\left(\frac{x+3}{2}\right)+1=\frac{3 x}{2}+\frac{11}{2}$
You can now graph the parametric equation by graphing the new rectangular equation. Draw in direction arrows to indicate which way the curve (or line) is moving as $t$ increases. For parametric equations involving trig functions, make use of identities like $\sin ^{2} \theta+\cos ^{2} \theta=1$ to eliminate $\theta$

Rewrite the following parametric equations into rectangular equation. Then, sketch the curve and indicate the direction of the curve (via direction arrows).
7.

$$
x=t+1
$$

$$
y=t^{2}
$$


$x=4+2 \cos \theta$
8.
$y=-1+\sin \theta$


## Polar Coordinates and Polar Equations

The polar coordinates $(\mathbf{r}, \theta)$ are related to the rectangular coordinates ( $\mathbf{x}, \mathrm{y}$ ) as follows. You should be able to deduce these relationships by examining the following right triangle.


$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta \\
& x^{2}+y^{2}=r^{2} \\
& \tan \theta=\frac{y}{x}
\end{aligned}
$$

Convert the following polar coordinates to rectangular coordinates:
9. $\left(8, \frac{\pi}{2}\right)=$
10. $\left(-2, \frac{5 \pi}{3}\right)=$
11. $\left(-4, \frac{-3 \pi}{4}\right)=$
12. $\left(0, \frac{-7 \pi}{6}\right)$

Given the following rectangular coordinates, find 2 sets of polar coordinates of the point for $0 \leq \theta \leq 2 \pi$.
13. $(4,6)=$
14. $(-3,4)=$
15. $(-\sqrt{3},-\sqrt{3})=$
16. $(3,-1)=$

Convert the rectangular equation to polar form:
17. $x^{2}+y^{2}=9$
18. $3 x-y+2=0$
19. $y^{2}-8 x-16=0$

Convert the polar equation to rectangular form:
20. $r=4 \sin \theta$
21. $\theta=\frac{\pi}{6}$
22. $r=\frac{6}{2-3 \sin \theta}$

## Sketch the graph of the polar equation by hand, i.e. without using a graphing calculator.

NOTE: You can use the calculator afterwards to verify that your graph is correct, but I do expect you to be able to sketch these graphs by hand (i.e. you may be asked to sketch polar graphs on a no calculator quiz).
23. $r=2 \cos (3 \theta)$

24. $r=2+4 \sin \theta$
25. $r=3(1-\cos \theta)$



