

Engineering Formula Sheet

 $\overline{\mathbf{x}} = \frac{\sum \mathbf{x_i}}{\mathsf{n}} \frac{\mathsf{(1.1b)}}{\mathsf{n}}$

1.0 Statistics

Mean

$$u = \frac{\sum x_i}{N}$$
 (1.1a)

 μ = population mean

 $\bar{x} = \text{sample mean}$

 $\sum x_i = \text{sum of all data values } (x_1, x_2, x_3, ...)$

N = size of population

n = size of sample

Median

Place data in ascending order.

If N is odd, median = central value

If N is even, median = mean of two central values

N = size of population

Range (1.5)

$$Range = x_{max} - x_{min}$$
 (1.3)

 $x_{max} = maximum data value$

 x_{min} = minimum data value

Mode

Place data in ascending order.

Mode = most frequently occurring value

(1.4)

If two values occur with maximum frequency the data set is *bimodal*.

If three or more values occur with maximum frequency the data set is *multi-modal*.

Standard Deviation

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{N}}$$

(Population)

(1.5a)

$$s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$$

(Sample)

(1.5b)

 σ = population standard deviation

s = sample standard deviation

 x_i = individual data value ($x_1, x_2, x_3, ...$)

 μ = population mean

 \bar{x} = sample mean

N =size of population

Independent Events

n = size of sample

2.0 Probability

Frequency

$$f_x = \frac{n_x}{n}$$

(2.1)

(1.2)

 f_x = relative frequency of outcome x

 n_x = number of events with outcome x

n = total number of events

P_A = probability of event A

Mutually Exclusive Events

 $P (A \text{ and } B \text{ and } C) = P_A P_B P_C$

$$P (A \text{ or } B) = P_A + P_B$$

(2.4)

P (A or B) = probability of either mutually exclusive event A or B occurring in a trial

P (A and B and C) = probability of independent

events A and B and C occurring in sequence

 P_A = probability of event A

Binomial Probability (order doesn't matter)

$$P_k = \frac{n!(p^k)(q^{n-k})}{k!(n-k)!}$$

(2.2)

P_k = binomial probability of k successes in n trials

p = probability of a success

q = 1 - p = probability of failure

k = number of successes

n = number of trials

Conditional Probability

$$P(A|D) = \frac{P(A) \cdot P(D|A)}{P(A) \cdot P(D|A) + P(\sim A) \cdot P(D|\sim A)}$$
(2.5)

P(A|D) = probability of event A given event D

P(A) = probability of event A occurring

 $P(\sim A)$ = probability of event A not occurring

 $P(D|\sim A)$ = probability of event D given event A did not occur

3.0 Plane Geometry

Circle Circumference = $2 \pi r$ (3.1) Area = π r²

Regular Polygons

Area = $n^{\frac{s(\frac{1}{2}f)}{2}}$

(3.15)

4.0 Solid Geometry Cube

Pyramid Volume = $\frac{Ah}{3}$ h (4.7)A = area of base

5.0 Constants

6.0 Conversions

Mass/Weight (6.1)

1 kg $= 2.205 lb_{m}$ $1 \text{ slug} = 32.2 \text{ lb}_{m}$ 1 ton = 2000 lb1 lb = 16 oz

Area (6.4)

1 acre = 4047 m^2 $= 43,560 \text{ ft}^2$ $= 0.00156 \text{ mi}^2$

Force (6.7)

= 0.225 lb1 N 1 kip = 1.000 lb

Energy (6.10)

= 0.239 cal $= 9.48 \times 10^{-4} Btu$ = 0.7376 ft·lb_f 1kW h = 3,600,000 J

Length (6.2)

1 m = 3.28 ft= 0.621 mi1 km 1 in. = 2.54 cm= 5280 ft1 mi = 3 ft1 yd

Volume (6.5)

= 0.264 gal $= 0.0353 \text{ ft}^3$ = 33.8 fl oz $= 1 \text{ cm}^3 = 1 \text{ cc}$ 1mL

Pressure (6.8)

1 atm = 1.01325 bar $= 33.9 \text{ ft H}_2\text{O}$ = 29.92 in. Hg= 760 mm Hg = 101,325 Pa = 14.7 psi $= 2.31 \text{ ft of H}_2\text{O}$ 1psi

7.0 Defined Units

1 J $= 1 \text{ N} \cdot \text{m}$ $= 1 \text{ kg·m} / \text{s}^2$ 1 N $1 \text{ Pa} = 1 \text{ N} / \text{m}^2$ = 1 W/A1 V 1 W = 1 J/s1Ω = 1 V/A $1 \text{ Hz} = 1 \text{ s}^{-1}$ 1 F $= 1 A \cdot s / V$ $= 1 V \cdot s / V$ 1 H

Time (6.3)

1 d = 24 h= 60 min1 h = 60 s1 min = 365 d1 yr

Temperature Unit Equivalents (6.6)

1 K = 1 °C = 1.8 °F = 1.8 °R See below for temperature calculation

Power (6.9)

1 W = 3.412 Btu/h= 0.00134 hp= 14.34 cal/min $= 0.7376 \text{ ft} \cdot \text{lb}_{\text{f}}/\text{s}$ 1 hp = 550 ft·lb/sec

8.0 SI Prefixes

Numbers Less Than One									
Power of 10	Prefix	Abbreviation							
10 ⁻¹	deci-	d							
10 ⁻²	centi-	С							
10 ⁻³	milli-	m							
10 ⁻⁶	micro-	μ							
10 ⁻⁹	nano-	n							
10 ⁻¹²	pico-	р							
10 ⁻¹⁵	femto-	f							
10 ⁻¹⁸	atto-	а							
10 ⁻²¹	zepto-	Z							
10 ⁻²⁴	yocto-	У							

Numbe	rs Greater In	ian One
Power of 10	Prefix	Abbreviation
10 ¹	deca-	da
10 ²	hecto-	h
10 ³	kilo-	k
10 ⁶	Mega-	M
10 ⁹	Giga-	G
10 ¹²	Tera-	Т
10 ¹⁵	Peta-	Р
10 ¹⁸	Exa-	Е
10 ²¹	Zetta-	Z
10 ²⁴	Yotta-	Y

9.0 Equations

Mass and Weight

 $m = VD_m$ (9.1)W = mg(9.2) $W = VD_w$ (9.3)

V = volume

 D_m = mass density

m = mass

D_w = weight density

W = weight

g = acceleration due to gravity

Temperature

 $T_{K} = T_{C} + 273$ (9.4)

 $T_R = T_F + 460$ (9.5)

 $T_F = \frac{9}{5} T_c + 32$ (9.6)

 T_K = temperature in Kelvin

 T_C = temperature in Celsius

 T_R = temperature in Rankin T_F = temperature in Fahrenheit

Force and Moment

F = ma(9.7a) $M = Fd_{\perp}$ (9.7b)

F = force

m = mass

a = acceleration

M = moment

d₁= perpendicular distance

Equations of Static Equilibrium

 $\Sigma F_x = 0$ $\Sigma F_y = 0$ $\Sigma M_P = 0$ (9.8)

 F_x = force in the x-direction F_v = force in the y-direction

 M_P = moment about point P

9.0 Equations (Continued)

Energy: Work

 $W = F_{\parallel} \cdot d$

(9.9)

W = work

 F_{\parallel} = force parallel to direction of displacement

d = displacement

Power

$$P = \frac{E}{t} = \frac{W}{t}$$

(9.10)

$$P = \tau \omega$$

(9.11)

P = power

E = energy

W = work

t = time

 τ = torque

 ω = angular velocity

Efficiency

Efficiency (%) = $\frac{P_{out}}{P_{in}} \cdot 100\%$ (9.12)

 P_{out} = useful power output P_{in} = total power input

Energy: Potential

U = mgh

(9.13)

U = potential energy

m =mass

g = acceleration due to gravity

h = height

Energy: Kinetic

$$K = \frac{1}{2} mv^2$$

(9.14)

K = kinetic energy

m = mass

v = velocity

Energy: Thermal

 $\Lambda Q = mc\Lambda T$

(9.15)

 $\Delta \mathbf{Q}$ = change in thermal energy

m = mass

c = specific heat

 ΔT = change in temperature

Fluid Mechanics

$$\frac{V_1}{T_4} = \frac{V_2}{T_2}$$
 (Charles' Law)

$$\frac{p_1}{T_1} = \frac{p_2}{T_2}$$
 (Gay-Lussanc's Law) (9.18)

$$p_1V_1 = p_2V_2$$
 (Boyle's Law) (9.19)

$$Q = Av$$

(9.20)

$$A_1v_1 = A_2v_2$$

(9.21)

$$P = Qp$$

absolute pressure = gauge pressure + atmospheric pressure (9.23)

p = absolute pressure

F = force

A = area

V = volume

T = absolute temperature

Q = flow rate

v = flow velocity

Mechanics

P = power

(9.24)

(9.25)

 $a = \frac{v_f - v_i}{L}$

(9.26)

 $X = \frac{v_i^2 \sin(2\theta)}{100}$

(9.27)

 $v = v_i + at$

(9.28)

 $d = d_i + v_i t + \frac{1}{2} a t^2$

(9.29)

 $v^2 = v_i^2 + 2a(d - d_i)$

(9.30)

 $\tau = dF \sin\theta$

(9.31)

 \overline{s} = average speed

 $\bar{\mathbf{v}}$ = average velocity

v = velocity

 v_i = initial velocity (t =0)

a = acceleration

X = range

t = time

 $\Delta \mathbf{d}$ = change in displacement

d = distance

 d_i = initial distance (t=0)

g = acceleration due to gravity

 θ = angle

 τ = torque

F = force

Electricity

Ohm's Law

$$V = IR$$

(9.32)

$$P = IV$$

(9.33)

$$R_T \text{ (series)} = R_1 + R_2 + \dots + R_n$$
 (9.34)

$$R_T$$
 (parallel) = $\frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}}$ (9.35)

Kirchhoff's Current Law

$$I_T = I_1 + I_2 + \cdots + I_n$$

$$\mathbf{or} \mid_{\mathsf{T}} = \sum_{k=1}^{\mathsf{n}} \mathsf{I}_{\mathsf{k}}$$
 (9.36)

Kirchhoff's Voltage Law

$$V_T = V_1 + V_2 + \dots + V_n$$

or
$$V_T = \sum_{k=1}^{n} V_k$$
 (9.37)

V = voltage

 V_T = total voltage

I = current

 I_T = total current

R = resistance

 R_T = total resistance

P = power

Thermodynamics

 $P = Q' = AU\Delta T$

(9.38)

 $P = Q' = \frac{\Delta Q}{\Delta t}$

(9.39)

 $U = \frac{1}{R} = \frac{k}{L}$

(9.40)

 $P = \frac{kA\Delta T}{L}$

(9.41)

 $A_1V_1 = A_2V_2$

(9.42)

 $k = \frac{PL}{A \wedge T}$

(9.44)

(9.43)

P = rate of heat transfer

Q = thermal energy

 $P_{net} = \sigma Ae(T_2^4 - T_1^4)$

A = area of thermal conductivity

U = coefficient of heat conductivity (U-factor)

 ΔT = change in temperature

 Δt = change in time

R = resistance to heat flow (R-value)

k = thermal conductivity

v = velocity

 P_{net} = net power radiated

 $\sigma = 5.6696 \times 10^{-8} \frac{W}{m^2 \cdot K^4}$

e = emissivity constant

L = thickness

 T_1 , T_2 = temperature at time 1, time 2

10.0 Section Properties

Moment of Inertia

$$I_{xx} = \frac{bh^3}{12}$$

(10.1)

I_{xx} = moment of inertia of a rectangular section about x axis

Complex Shapes Centroid

$$\overline{x} = \frac{\sum x_i A_i}{\sum A_i}$$
 and $\overline{y} = \frac{\sum y_i A_i}{\sum A_i}$

(10.2)

 \overline{x} = x-distance to the centroid

 \overline{y} = y-distance to the centroid

 $x_i = x$ distance to centroid of shape i

y_i = y distance to centroid of shape i

A_i = Area of shape i

Rectangle Centroid

$$\bar{x} = \frac{b}{2}$$
 and $\bar{y} = \frac{h}{2}$

Right Triangle Centroid

$$\bar{x} = \frac{b}{3}$$
 and $\bar{y} = \frac{h}{3}$

Semi-circle Centroid

$$\bar{x} = r \text{ and } \bar{y} = \frac{4r}{3\pi}$$
 (10.5)

 \overline{x} = x-distance to the centroid

 \bar{y} = y-distance to the centroid

11.0 Material

Stress (axial)

$$_{5} = \frac{F}{\Delta} \tag{11.1}$$

 $\sigma = stress$

F = axial force

A = cross-sectional area

Strain (axial)

$$\varepsilon = \frac{\delta}{L_0}$$

(11.2)

 $\varepsilon = strain$

 L_0 = original length

 δ = change in length

Modulus of Elasticity

$$E = \frac{\sigma}{2}$$

(11.3)

$$E = \frac{(F_2 - F_1)L_0}{(\delta_2 - \delta_1)A}$$
 (11.4)

E = modulus of elasticity

 $\sigma = stress$

 $\varepsilon = strain$

A = cross-sectional area

F = axial force

 δ = deformation

12.0 Structural Analysis

Deformation: Axial

$$\delta = \frac{\Gamma L_0}{AE}$$

(12.13)

 δ = deformation

F = axial force

 L_0 = original length

A = cross-sectional area

E = modulus of elasticity

Truss Analysis

$$2J = M + R$$

(12.14)

J = number of joints

M =number of members

R = number of reaction forces

13.0 Simple Machines

Mechanical Advantage (MA)

$$IMA = \frac{D_E}{D_R} \qquad (13.1) \qquad AMA = \frac{F_R}{F_E} \qquad (13.2)$$

% Efficiency=
$$\left(\frac{AMA}{IMA}\right)$$
 100 (13.3)

IMA = ideal mechanical advantage AMA = actual mechanical advantage

 D_E = effort distance D_R = resistance distance F_E = effort force F_R = resistance force

Pulley Systems

IMA = total number of strands of a single string supporting the resistance (13.4)

$$IMA = \frac{D_{E} \text{ (string pulled)}}{D_{R} \text{ (resistance lifted)}}$$
 (13.5)

Inclined Plane

IMA=
$$\frac{L}{H}$$
 (13.6)

Wedge

IMA=
$$\frac{L}{H}$$
 (13.7)

Screw

$$IMA = \frac{C}{Pitch}$$
 (13.8)

Pitch

C = circumference r = radius Pitch = distance between

threads
TPI = threads per inch

Compound Machines

 $MA_{TOTAL} = (MA_1) (MA_2) (MA_3) ...$ (13.10)

Gears; Sprockets with Chains; and Pulleys with Belts Ratios

$$GR = \frac{N_{out}}{N_{in}} = \frac{d_{out}}{d_{in}} = \frac{\omega_{in}}{\omega_{out}} = \frac{\tau_{out}}{\tau_{in}}$$
 (13.11)

$$\frac{d_{out}}{d_{in}} = \frac{\omega_{in}}{\omega_{out}} = \frac{\tau_{out}}{\tau_{in}}$$
 (pulleys) (13.12)

Compound Gears

GR = gear ratio

 ω_{in} = angular velocity - driver

 ω_{out} = angular velocity - driven

 N_{in} = number of teeth - driver

N_{out} = number of teeth - driven

d_{in} = diameter - driver

d_{out} = diameter - driven

 τ_{in} = torque - driver

 $\tau_{\rm out}$ = torque - driven

14.0 Structural Design

Steel Beam Design: Shear

$$V_a \le \frac{V_n}{\Omega_v}$$

$$V_n = 0.6F_vA_w$$

V_a = internal shear force

V_n = nominal shear strength

 $\Omega_v = 1.5 = factor of safety for shear$

 F_v = yield stress

 A_w = area of web

 $\frac{v_n}{\hat{a}}$ = allowable shear strength

Steel Beam Design: Moment

$$M_a \le \frac{M_n}{\Omega_b}$$

$$M_n = F_y Z_x \tag{14.4}$$

M_a = internal bending moment

M_n = nominal moment strength

 $\Omega_b = 1.67 = factor of safety for$ bending moment

 F_v = yield stress

 Z_x = plastic section modulus about neutral axis

Rational Method Runoff Coefficients

 $\frac{M_n}{\Omega_b}$ = allowable bending strength

Catamani-ad by Cuntaga

Spread Footing Design (14.5)

 $q_{net} = q_{allowable} - p_{footing}$

 $p_{\text{footing}} = t_{\text{footing}} \cdot 150 \frac{\text{lb}}{\text{m}^2}$ (14.6)

$$q = \frac{P}{A} \tag{14.7}$$

q_{net} = net allowable soil bearing pressure

q_{allowable} = total allowable soil bearing pressure

p_{footing} = soil bearing pressure due to footing weight

 $t_{footing}$ = thickness of footing

q = soil bearing pressure

P = column load applied

A = area of footing

15.0 Storm Water Runoff

Storm Water Drainage

 $Q = C_fCiA$

(15.1)

$$C_{c} = \frac{C_{1}A_{1} + C_{2}A_{2} + \cdots}{A_{1} + A_{2} + \cdots}$$
(15.2)

Q = peak storm water runoff rate (ft^3/s)

C_f = runoff coefficient adjustment factor

C = runoff coefficient

i = rainfall intensity (in./h)

A = drainage area (acres)

Runoff Coefficient Adjustment Factor						
Return						
Period	Cf					
1, 2, 5, 10	1.0					
25	1.1					
50	1.2					
100	1.25					

Categorized by Surface						
Forested	0.059—0.2					
Asphalt	0.7—0.95					
Brick	0.7—0.85					
Concrete	0.8—0.95					
Shingle roof	0.75—0.95					
Lawns, well draine	ed (sandy soil)					
Up to 2% slope	0.05—0.1					
2% to 7% slope	0.10—0.15					
Over 7% slope	0.15—0.2					
Lawns, poor drain						
Up to 2% slope	0.13—0.17					
2% to 7% slope	0.18—0.22					
Over 7% slope	0.25—0.35					
Driveways,	0.75—0.85					
Categorized						
Farmland	0.05—0.3					
Pasture	0.05—0.3					
Unimproved	0.1—0.3					
Parks	0.1—0.25					
Cemeteries	0.1—0.25					
Railroad yard	0.2—0.40					
Playgrounds	0.2—0.35					
Business D	Districts					
Neighborhood	0.5—0.7					
City (downtown)	0.7—0.95					
Residential						
Single-family	0.3—0.5					
Multi-plexes,	0.4—0.6					
Multi-plexes,	0.6—0.75					
Suburban	0.25—0.4					
Apartments,	0.5—0.7					
Industrial						
Light	0.5—0.8					
L -						

0.6 - 0.9

Heavy

16.0 Water Supply

Hazen-Williams Formula

$$h_f = \frac{10.44 LQ^{1.85}}{C^{1.85} d^{4.8655}} \tag{16.1}$$

h_f = head loss due to friction (ft of H₂O)

L = length of pipe (ft)

Q = water flow rate (gpm)

C = Hazen-Williams constant

Dynamic Head

dynamic head = static head head loss (16.2)static head = change in elevation between source and discharge (16.3)

17.0 Heat Loss/Gain

Heat Loss/Gain

 $Q' = AU\Delta T$ (17.1)

 $U = \frac{1}{R}$ (17.2)

Q = thermal energy

A = area of thermal conductivity

U = coefficient of heat

conductivity (U-factor)

 ΔT = change in temperature

R = resistance to heat flow (Rvalue)

18.0 Hazen-Williams Constants

Pipe Material	Typical Range	Clean, New Pipe	Typical Design Value
Cast Iron and Wrought Iron	80 - 150	130	100
Copper, Glass or Brass	120 - 150	140	130
Cement lined Steel or Iron		150	140
Plastic PVC or ABS	120 - 150	140	130
Steel, welded and seamless or interior riveted	80-150	140	100

19.0 Equivalent Length of (Generic) Fittings

	Constant Students		Pipe Size											
Screwed Fitti	ngs	1/4	3/8	1/2	3/4	1	1 1/4	1 ½	2	2 ½	3	4		
	Regular 90 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0		
Elbows	Long radius 90 degree	1.5	2.0	2.2	2.3	2.7	3.2	3.4	3.6	3.6	4.0	4.6		
	Regular 45 degree	0.3	0.5	0.7	0.9	1.3	1.7	2.1	2.7	3.2	4.0	5.5		
T	Line Flow	0.8	1.2	1.7	2.4	3.2	4.6	5.6	7.7	9.3	12.0	17.0		
Tees	Branch Flow	2.4	3.5	4.2	5.3	6.6	8.7	9.9	12.0	13.0	17.0	21.0		
Return Bends	Regular 180 degree	2.3	3.1	3.6	4.4	5.2	6.6	7.4	8.5	9.3	11.0	13.0		
	Globe	21.0	22.0	22.0	24.0	29.0	37.0	42.0	54.0	62.0	79.0	110.0		
	Gate	0.3	0.5	0.6	0.7	0.8	1.1	1.2	1.5	1.7	1.9	2.5		
Valves	Angle	12.8	15.0	15.0	15.0	17.0	18.0	18.0	18.0	18.0	18.0	18.0		
	Swing Check	7.2	7.3	8.0	8.8	11.0	13.0	15.0	19.0	22.0	27.0	38.0		
Strainer			4.6	5.0	6.6	7.7	18.0	20.0	27.0	29.0	34.0	42.0		

Flowers d F		Pipe Size																
Flanged F	ittings	1/2	3/4	1	1 1/4	1 ½	2	2 ½	3	4	5	6	8	10	12	14	16	18
	Regular 90 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
Elbows	Long radius 90 degree	1.1	1.3	1.6	2.0	2.3	2.7	2.7	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Regular 45 degree	0.5	0.6	0.8	1.1	1.3	1.7	2.0	2.5	3.5	4.5	5.6	7.7	9.0	11.0	13.0	15.0	16.0
Tees	Line Flow	0.7	0.8	1.0	1.3	1.5	1.8	1.9	2.2	2.8	3.3	3.8	4.7	5.2	6.0	6.4	7.2	7.6
rees	Branch Flow	2.0	2.6	3.3	4.4	5.2	6.6	7.5	9.4	12.0	15.0	18.0	24.0	30.0	34.0	37.0	43.0	47.0
Return	Regular 180 degree	0.9	1.2	1.6	2.1	2.4	3.1	3.6	4.4	5.9	7.3	8.9	12.0	14.0	17.0	18.0	21.0	23.0
Bends	Long radius 180 degree	1.1	1.3	1.6	2.0	2.3	2.7	2.9	3.4	4.2	5.0	5.7	7.0	8.0	9.0	9.4	10.0	11.0
	Globe	38.0	40.0	45.0	54.0	59.0	70.0	77.0	94.0	120.0	150.0	190.0.	260.0	310.0	390.0			
Values	Gate						2.6	2.7	2.8	2.9	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2
Valves	Angle	15.0	15.0	17.0	18.0	18.0	21.0	22.0	285.0	38.0	50.0	63.0	90.0	120.0	140.0	160.0	190.0	210.0
	Swing Check	3.8	5.3	7.2	10.0	12.0	17.0	21.0	27.0	38.0	50.0	63.0	90.0	120.0	140.0			

20.0 555 Timer Design

$$T = 0.693 (R_A + 2R_B)C$$
 (20.1)

$$f = \frac{1}{T} \tag{20.2}$$

duty-cycle =
$$\frac{(R_A + R_B)}{(R_A + 2R_B)} \cdot 100\%$$
 (20.3)

T = period

f = frequency

 R_A = resistance A

 R_B = resistance B

C = capacitance

21.0 Boolean Algebra

Boolean Theorems

X• 0 = 0	(21.1)

$$X \bullet 1 = X \tag{21.2}$$

$$X \cdot \overline{X} = 0$$
 (21.4)

$$X + 0 = X$$
 (21.5)

$$X + 1 = 1$$
 (21.6)

$$X + X = X \tag{21.7}$$

$$X + \overline{X} = 1 \tag{21.8}$$

$$X + X = 1$$
 (21.8)

$$\overline{\overline{X}} = X$$
 (21.9)

Commutative Law

$$X \bullet Y = Y \bullet X \tag{21.10}$$

$$X+Y=Y+X (21.11)$$

Associative Law

$$X(YZ) = (XY)Z (21.12)$$

$$X + (Y + Z) = (X + Y) + Z$$
 (21.13)

Distributive Law

$$X(Y+Z) = XY + XZ \tag{21.14}$$

$$(X+Y)(W+Z) = XW+XZ+YW+YZ$$
 (21.15)

Consensus Theorems

$$X + \overline{X}Y = X + Y \qquad (21.16)$$

$$X + \overline{X}\overline{Y} = X + \overline{Y}$$
 (21.17)

$$\overline{X} + XY = \overline{X} + Y$$
 (21.18)

$$\overline{X} + X\overline{Y} = \overline{X} + \overline{Y}$$
 (21.19)

DeMorgan's Theorems

$$\overline{XY} = \overline{X} + \overline{Y}$$
 (21.20)

$$\overline{X+Y} = \overline{X} \bullet \overline{Y}$$
 (21.21)

22.0 Speeds and Feeds

$$N = \frac{CS(12\frac{in.}{ft})}{\pi d}$$

(22.1)

$$f_m = f_t \cdot n_t \cdot N$$

(22.2)

Plunge Rate = ½·f_m

N = spindle speed (rpm)

CS = cutting speed (in./min)

d = diameter (in.)

f_m = feed rate (in./min)

 $f_t = feed (in./tooth/rev)$

 n_t = number of teeth

23.0 Aerospace

Forces of Flight

$$C_D = \frac{2D}{A\rho v^2}$$
 (23.1)

$$R_{e} = \frac{\rho vI}{\mu}$$
 (23.2)

$$C_{L} = \frac{2L}{A\rho v^2}$$
 (23.3)

$$M = Fd \tag{23.4}$$

 C_L = coefficient of lift C_D = coefficient of drag

L = lift

D = drag

A = wing area

 ρ = density

 R_e = Reynolds number

v = velocity

I = length of fluid travel

 μ = fluid viscosity

F = force

m = mass

g = acceleration due to gravity

M = moment

d = moment arm (distance from datum perpendicular to F)

Propulsion

$$F_N = W(v_i - v_o)$$
 (23.5)

$$I = F_{ave} \Delta t \tag{23.6}$$

$$F_{\text{net}} = F_{\text{avg}} - F_{\text{g}} \qquad (23.7)$$

$$a = \frac{v_f}{\Delta t}$$
 (23.8)

 F_N = net thrust

W = air mass flow

vo = flight velocity

v_i = jet velocity

I = total impulse

F_{ave} = average thrust force

 Δt = change in time (thrust

duration)

 F_{net} = net force

 F_{avg} = average force

 F_g = force of gravity

v_f = final velocity

a = acceleration

 Δt = change in time (thrust duration)

NOTE: F_{ave} and F_{avg} are easily confused.

Energy

$$K = \frac{1}{2} mv^2$$
 (23.9)

$$U = \frac{-GMm}{R}$$
 (23.10)

$$E = U + K = -\frac{GMm}{2R}$$
 (23.11)

G =
$$6.67 \times 10^{-11} \frac{\text{m}^3}{\text{kg} \times s^2}$$
 (23.12)

K = kinetic energy

m =mass

v = velocity

U = gravitational potential energy

G = universal gravitation constant

M =mass of central body

m = mass of orbiting object

R = Distance center main body to

center of orbiting object

E = Total Energy of an orbit

Orbital Mechanics

$$e = \sqrt{1 - \frac{b^2}{a^2}}$$
 (23.13)

$$T = 2\pi \frac{a^{\frac{3}{2}}}{\sqrt{\mu}} = 2\pi \frac{a^{\frac{3}{2}}}{\sqrt{GM}}$$
 (23.14)

$$F = \frac{GMm}{r^2}$$
 (23.15)

e = eccentricity

b = semi-minor axis

a =semi-major axis

T = orbital period

a = semi-major axis

 μ = gravitational parameter

F = force of gravity between two bodies

G = universal gravitation constant

M =mass of central body

m = mass of orbiting object

r = distance between center of two objects

Bernoulli's Law

$$\left(P_{S} + \frac{\rho v^{2}}{2}\right)_{1} = \left(P_{S} + \frac{\rho v^{2}}{2}\right)_{2}$$
 (23.16)

P_S = static pressure

v = velocity

 ρ = density

Atmosphere Parameters

T = 15.04 - 0.00649h

(23.17)

$$p = 101.29 \left[\frac{(T + 273.1)}{288.08} \right]^{5.256}$$
 (23.18)

$$\rho = \frac{p}{0.2869(T + 273.1)}$$
 (23.19)

T = temperature

h = height

p = pressure

 ρ = density